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Equivalence of the Regge and Einstein Equations 
Using Cartan's Moment of Rotation 
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An explicit derivation of the Einstein tensor via Cartan's moment of rotation on 
an infinitesimal lattice is presented. With the standard form of the Einstein 
equations assumed, the equivalence of the Regge equations with matter to the 
Einstein equations is demonstrated in detail using a spherically symmetric 
example with proper time slicing. Such an example has been numerically evolved 
to within r = 2M using null struts. These results make Regge calculus more 
readily applicable and provide a justification for its use. 

1. THE TRANSITION FROM CONTINUOUS TO DISCRETE 
GEOMETRODYNAMICS 

One of the various approaches to numerical general relativity which 
has intuitive geometric appeal is that of Regge calculus. In Regge calculus, 
the spacctimc is discretized into blocks each of which is fiat, and the 
variables defining the geometry are the edge lengths of the blocks. For 
practical applications, a slicing condition is chosen which defines a direc- 
tion of time. This slicing condition amounts to a foliation of the spacetime 
into spacelike hypersurfaces. 

The Regge equations arc generally derived from an action principle. 
However, the usefulness of the Cartan moment of rotation for the unifica- 
tion of the laws of physics has recently been demonstrated (Kbeyfets and 
Miller, 1991), and this concept has also been applied to the interpretation 
of the Ashtekar variables in gravitation (Kheyfets and Miller, 1992). Thus, 
a derivation which explicitly shows the transition from continuum geo- 
metrodynamics to the Regge equations by means of the Cartan moment of 
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rotation could provide a basis for a dearer interpretation of the results o f  
numerical procedures in general relativity. 

In this paper, the Cartan moment of rotation will be shown explicitly 
to contain the same information as the Einstein tensor. Following this, the 
transition from the tensorial Einstein equations to the Regge equations 
with matter will be performed via a spherically symmetric example. Finally, 
evidence for the usefulness of the Regge equations will be provided from a 
recent numerical calculation. 

2. DERIVATION OF THE EINSTEIN TENSOR FROM THE 
CARTAN MOMENT OF ROTATION 

The geometric object in spacetime which produces the change in a 
vector parallel-transported around a planar circuit is the (~l)-valued curva- 
ture two-form: 

R = 1/2ea| c A ~ d  (1) 

with the standard range, 0 to 3, of spacetime indices for all subscripts and 
superscripts. This operator produces a rotation of a parallel-transported 
vector V around a parallelogram 2A A B, since the magnitude of the vector 
will be preserved: 

AV = - 1/2 R(V, 2A A B) (2) 

A V a = -- VbRabcdA CBd (3) 

In this paper the convention for the wedge product of forms will be 
(Helgason, 1962; Lovelock and Rund, 1975) 

a A b(Xl . . . .  , X r  "t" S) 

= 1/(r + s ) !  Y', sign(j1 . . . . .  Jr+s) a(Xjl . . . .  , Xjr)b(Xjr+l . . . . .  Xs.) (4) 

where sign is the standard two-valued permutation operator. A correspond' 
ing definition applies to multivectors. This type of definition is naturally 
adapted to simplices rather than paralleleopipeds. 

A more convenient form of the rotation operator for the derivation of 
the Einstein tensor is 

t ~  D a b  c (.od R = 1/4 ea h e b ~,~ a .  cd O) A ( 5 )  

A second object of interest, which reproduces any vector inserted into it, is 

dP = e~ | o9 ~ (6) 

(dP ,  A> = e~A a = A (7) 

This is sometimes called the "soldering form" or "unit tensor." 
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The Cartan moment-of-rotation operator, created by wedge multiply- 
ing the abstract object dP,  taken as a lever arm, against the rotation 
operator, is directly related to the Einstein tensor (Misner et  aL, 1973). To 
see this, let the Cartan moment-of-rotation trivector-valued three-form be 
defined as 

z = d P  ^ R = 1/4 ea ^ eb ^ e~| ^ rod ^ ro, (8) 

It is the right and left Hodge dual of this operator which gives the Einstein 
tensor expressed explicitly in a tensor basis. This is now demonstrated. 
Applying the Hodge dual to the 3-form, we obtain 

*z = 1/4 (ea ^ eb ^ e~) | R~bd~ .(roe ^ rod ^ foe) (9) 

To compute the dual, the  3-form should be put into standard form 
(Straumann, 1984) to obtain the components needed which will have their 
indices raised: 

O) -.w. (.o c A o )  d A o.) e 

= 1/3! aa%jkro ~ ̂  a / ^  (.ok = 1/3! ro~jkro ~ ̂  a / ^  rok (10) 

roqk = a'~ev~ (11) 

(*ro)~ = 1/3! r/r,,~ro"' (12) 

rb,w = e~,,~ v / g  (13) 

ro ~,t _ gr~ g, j  g ,g ro , k = gri g*J gtk S dceljk (14) 

rstv( ' l )rsl  = ers tv  x/g gngSjgtg ~ deetYk 

= 3! g,,.,,,,x/gg~Cg'ag te (15) 

where g is the determinant of gab when it is looked upon as a matrix, and 
er~t~ is the Levi-Civita density. Equation (15) is obtained by noting how the 
antisymmetries of the dummy indices on the Levi-Civita density and the 
generalized Kronecker 6 symbol, also called a numerical tensor, interact. 
Canceling factorials, we obtain 

(*ro)v = srst~.x/g grCgSag *e (16) 

This object provides the components of the first dual of  interest. There will 
also be a dual which affects the multivector. Applying now the dual to the 
trivector, we find 

*z* = 1/4 (e, ^ eb ^ ec)* |  *(o9 c ^ o9 d ^ e) e) (17) 
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The standard form is again obtained, 

e = e~ ^ eb ^ e~ = 1/3! (~mnPabce m A e n A ep 

= 1/3[ emnPem A e n ^ ep ( 1 8 )  

e mnp = 6 mnPab c ( 1 9 )  

( e * )  q = 1/3! tluhWqeuh w (20) 

= wq/ /g (21) 

euhw ~- gumghngwp emnp 

---- gumghngwpt~ mnPabc (22) 

Using the same kind of manipulations as above for the Levi-Civita density 
and the generalized 6 symbol, we find 

~, uhwq (e*) q = -- gu,~g,,bgwc/~/g (23) 

The fight and left Hodge dual of the moment of rotation can then be 
written 

*z* = --1/4 (euhWqguaghbgwc)Rabde(erswgrcgsdgte)e q ~ CO v (24) 

*T* -- - 1/4 (suhWqgrswt~rwguaghbgsdgte)Rabde e q (~  O~ v (25) 

*z* = -- 1/4 (er"hqe,s~ )RSt,, h eq | o9 v (26) 

*~* = -- 1/4 6"hqstvR"~, h eq | ~ (27) 

A straightforward evaluation of the effect of the generalized 6 symbol gives 

*Z* = RUq~ve q @~o v - -  1/2 Req ~)(,o q (28) 

*'r* = (Rqv --  1/2 R t~qv)eq @OJ v (29) 

The Ricci tensor and scalar are now obviously displayed. The fight-hand 
side is the Einstein tensor. Thus, the combined fight and left Hodge dual of 
Cartan's moment of  rotation (a trivector-valued three-form) is a vector-val- 
ued one-form with the same information as the Einstein tensor. This 
method provides an alternative approach to the standard action principle 
derivation as seen in Regge (1961). Although here the calculation is 
straightforward, there are occasions when one must carefully distinguish 
the two duals. The need for care and the explicit requirements for the two 
duals when applying the soldering form in gauge theory are documented in 
Kheyfets (1986), which also makes further use of  Cartan's moment of  
rotation. 
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3. TRANSITION FROM THE EINSTEIN EQUATIONS TO THE 
REGGE EQUATIONS WITH MATTER 

A form of the inhomogcneous Einstein equations which is used in 
Regge calculus is (Kheyfets et al., 1990) 

E LjS, j = 87gTAB V*4 B (30) 

where the sum on j is over the faces attached to the edge AB. Here L s is the 
moment arm for the j th  2-dimensional face, called a hinge, which is 
attached to edge AB, ~j is the deficit angle due to parallel transport of an 
arbitrary vector around hinge j, TAB is the stress-energy along edge AB, and 
V'At is the volume dual to the edge AB. Referring to Fig. 1, we note that 
there are a total of six hinges attached to edge AB. Note that the angular 
displacements in the figure are orthogonal to both the radial as well as the 
temporal directions. This cannot be well represented in the figure. The 
number of hinges depends upon the type of decomposition of the space- 
time. A more general tetrahedral discretization of the spacelike hypersur- 
face at a constant value of the time parameter will have a different number 
of hinges per edge than the spherically symmetric discretization chosen 

Ao k 

\ / 

~ o  k 

Fig. 1. Hinges and dual volume trivector for edge AB. 
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here. V'An is constructed from the paths of parallel transport around the 
hinges. In what follows, when an explicit projection is performed, AB will 
be a radial edge in a spherically symmetric application of Regge calculus. 
It is a basic assumption of Regge calculus that the blocks of which the 
discretization of spacetime is made can each be given a coordinate system 
with an associated Minkowski metric. However, the coordinate systems 
cannot be made to match over a closed loop which goes through several of 
the blocks. 

The standard Einstein equations in the style of equation (29) will now 
be put into the Regge equation form. After setting the right-hand side of 
equation (29) equal to the energy momentum tensor T, the dual will again 
be taken on the 1-form in the equation. However, on the left-hand side, the 
double application of the left dual on the moment of rotation will merely 
bring the object back to the negative of the original expression, but with 
the dual with respect to the multivectors remaining, 

*z* = (Rab -- 1/2 6"t,R)e,, | b = Tabea ~ 0 )  b (31) 

**X* = --Z* (32) 

- - (eaAeb Aec)*(~Rabae(coc Ac.Oa A ~ e ) =  Tabea~*cob (33) 

On the right-hand side of equation (33) the dual of a one-form now 
appears into which the specific multivector characterizing the dual lattice 
volume will be inserted. The same multivector will be inserted into the 
left-hand side, but due to the presence of the Riemann tensor, the charac- 
teristics of the result will be different. The left-hand side will decompose 
into a sum of moment arms times deficit angles. This is the form of 
Einstein's equations which is used in Regge calculus. 

The right-hand side of equation (33) will be developed to display an 
explicit three-form. Then, the dual volume for the case of the radial edge is 
inserted into it, and the resulting vector is projected onto the one-form 09" 
dual to the radial edge. The letter o" corresponds to arc length along the 
radial direction in a proper time slicing of the spacetime. The connecting 
struts between the slices are null. Afterward, the left-hand side will be 
developed, and similar processes will be done to it. The result will be a 
characteristic example of the moment arm times deficit angle Regge equa- 
tions. These manipulations are now performed. 

We have 

( *ogb)stv = first, w" = er, to ~/g grm~m (34) 

where o9 m are the components of the basis form co b, 

~o ~ = 6 ~ , . c o  m ( 3 5 )  

r = 6 bm (36) 
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(*r = erstv ~/g grb (37) 
rb s 

= 1/3! e~stvx/gg~bo9 s ^ o9 t A o~ ~ (38) 

Now the approximate dual volume as shown in Fig. 1 is inserted into 
equation (33) and the result projected onto o9 ". Note that in this example, 
because of the assumptions of Regge calculus and an imaginary time 
coordinate, the metric is Euclidean. Here Ar = A0 for convenience of 
calculation, er stands for the proper-time basis vector. The right-hand side 
of equation (33) is almost in the correct form as it stands. It only needs to 
be shown that Tan V*aB is the projection along the edge A B  of 
Tabea @ *O9 b. Projection along A B  is by the 1-form dual to %: 

TabO)~r(ea) *~b  = Tab 6,~ *096 = T~b *fob 

= T~r(1/3!)e,~tvo9 ~ ^ o~ t ^ co ~ (39)  

using the Euclidean metric. Insertion of the volume trivector dual to edge 
A B  gives 

T'~(1/3!)erstoco s ^ o9 t ^ o3" 

[3! (i Aaker ^ rk+ 1 A0% ^ rk+ I A0e0)] 

= T '~ i  Aak  r2+l A02 = TABV*AB (40) 

By inspection of the imaginary Euclidean volume (see Figs. 1 and 2), 

V'An = i Aa k r2+ 1 A02 (41) 

In Fig. 2, each area with a different cross-hatching denotes a volume 
associatd with a vertex. The diagonal lines connecting different proper 
times are null struts. Figure 2 suppresses all angular dimensionality and is 
an approximation using a Minkowski-like representation. The individual 
volumes actually decrease with increasing proper time. By cancellation 
using equations (40) and (41), 

TaB = T ~ (42) 

When the same choice of projection is made later for the left-hand side of 
the equation, the standard variables of the Regge equations appear natu- 
rally, so that the choice is confirmed as appropriate. 

Working on the left-hand side of equation (33) containing the 
Riemann tensor, the operations require a bit more effort. After applying 
the dual operator to the trivector, inserting the dual volume trivector into 
the three-form, and projecting onto to ~, the result is 

eijklgiagjbgkcW~(el )Rabde(Ojc ^ r o d ^  (.t) e) 

[3[ (i A~7 k e r  A r k +  1 A0 er ^ rk+l A0 %)]/4 
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Sharing of the total volume, T-~r plane. 

Examining the volume calculation separately, we find 

~o c ̂  w d ̂  of[3! (i Act k er ^ rk+ 1AO er ^ rk+ I A0 e0)] 

= i Aa k r~+ l A0: ~ca~ro~ (43) 

It is convenient to express the numerical tensor in the following form: 

6caeT04, = tic T 6deO, + 6~0 ~ae~, r + 6c,  6deTo ( 4 4 )  

The effect of the first term from this expression will be sufficient to indicate 
the general result. Remembering that the metric is Euclidean, we find 

eiJ~tgi,,gjbgkc 6"~tRabae 6"r ~ae~o = 2eiYr"Rijo,~ = 4R~ o~ (45) 

Examining the first term generated by equation (43), we obtain the result 

2i(Aak/2)R~ + 1 A02 

This is almost in the final form. The moment arm for the hinge in the T - a  
plane, i Aak/2,  appears in front of the Riemann tensor components. As there 
are two such hinges, one into the future and one into the past with the 



Equivalence of Regge and Einstein Equations 1707 

same value for the moment arm, the rest of the expression must involve the 
deficit angle. This is now shown. 

As previously noted, the formula for the change in a vector parallel- 
transported around a small area 2(A ^ B) is 

AV = - VbR"bcaA CBaea (46) 

It is known that a vector which is parallel-transported does not change its 
magnitude. Thus, the change of the vector has components which are 
normal to the original vector. A unit basis vector which is rotated a small 
amount in a plane will produce a component of value e on the other basis 
vector of the plane. The plane is the 0-~b plane for the radial edge and the 
timelike hinge of interest, and e0 is the vector to be parallel-transported. All 
of the projections in the space dual to the 0 - ~  plane will be eliminated 
because they are part of the hinge. Thus, for the specific case at hand, 

V = eo, V b = 6bO (47) 

AV = e% = - VbR~~  c B a %  (48) 

A ~ = A o = rk + I AO, B d  = B Y  = rk + 1 A0 (49) 

e = --6boR4~bo4~(rk + ~ AO) z (50) 

= R~ 1 A0) 2 (51) 

Substituting this result into the first term arising from the expansion in 
equation (43), we find that term now reads 

2(i Aa~/2)e + . . .  

This term is of the form of moment arm times deficit angle, with the factor 
of 2 arising from the fact that there are two hinges of this type attached to 
A B ,  one into the future and one into the past. The other terms are evaluated 
in the same manner, so that one ends up with a term for each face which 
hinges on the edge A B ,  and each of these terms has the form of moment arm 
times deficit angle. In practice, the accurate expressions for the dual volumes 
should be used which are defined by the faces about which parallel transport 
takes place. Then one will see, for example, factors of rfk + 1 A0 and rPk + 1 AO 

instead of rk + ~ A0 on both sides of the equation, where the f indicates a 
position in the future slice and p indicates a position in the past slice. This 
is consistent with the structure of the Cauchy problem for general relativity. 
These expressions can be found in Kemmetl (1992). Finally, the left-hand 
side is set equal to the right-hand side of the original equation. 

The result of the above manipulations is, in general notation, 

L~e~ = 8nTAn V'An (52) 
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as derived for a radial strut in a spherically symmetric lattice. This 
particular equation is an evolution equation. Although a form of the 
standard Regge equations has been obtained, care must be taken using the 
imaginary time coordinate. In the case of the momentum constraint 
equations, an imaginary factor arises, and with the Hamiltonian constraint 
equation, a negative sign appears, as can be expected from substituting it 
for t in the continuum equations for the Cauchy problem in a standard text 
such as Adler et al. (1975). Arkady Kheyfets and the author both noted the 
need to modify the standard expression above to compensate for the use of 
this coordinate. However, with this proviso for this coordinate system, it 
can be seen that by application of the Cartan moment of rotation, the 
Regge equations are a discrete version of the Einstein equations. 

4. RESULTS OF A NUMERICAL CALCULATION 

The Regge equations with matter were used to numerically calculate 
Oppenheimer-Snyder collapse of pressure-free dust, using proper time 
slicing, null-struts, and an imaginary time coordinate. The Friedmann 
solution was used for analytical comparison of the interior solution, and 
the Novikov form of the vacuum solution was used to compare the exterior 
solution. These solutions were matched at the boundary of the star both 
analytically and numerically. Collapse to within the event horizon for a 
Schwarzschild black hole was modeled with 98% radial accuracy as the 
Schwarzschild radius was passed, with mass conserved to 90%. A full 
presentation of these results and a description of the numerical procedure 
will appear in a future paper. 

5. CONCLUSION 

Constructed from a product of a soldering form and the curvature 
2-form, the Cartan moment of rotation is a powerful starting point for the 
derivation of the Einstein tensor, and it appears to have important applica- 
tions in settings other than geometrodynamics. The Regge equations with 
matter follow directly from the Einstein equations. Application of the 
Regge equations to Oppenheimer-Snyder collapse shows them to be 
capable of dealing with massive lattices. It can be concluded that astro- 
physical problems using Regge lattices with matter can be solved with 
confidence that the fundamental approach is sound. 
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